Large Scale Evacuation Modeling Planning and TTX – Application on the Medieval City of Rhodes

The EXODUS large scale evacuation model

Lazaros FILIPPIDIS¹, Peter LAWRENCE¹, Darren BLACKSHIELDS¹, Ilias Argyris²

Fire Safety Engineering Group University of Greenwich

March 2020, Athens

FSEG: Modelling safety and security

- Main FSEG research work includes the mathematical modelling and experimental analysis of: Pedestrian and Evacuation dynamics in complex spaces, combustion and fire/smoke spread, fire suppression
- FSEG is probably the largest, University based, fire safety engineering research group in Europe
- FSEG produces predictive tools for modelling both evacuation and fire propagation: EXODUS and SMARTFIRE, both with extensive validation history
- Under continual development since early 90s
- EXODUS variants for air, built, maritime, rail and urban scale environments

FSEG

EXODUS in a nutshell....

- EXODUS is a microsimulation Agent Based Model (ABM)
- Capable of simulating the evacuation process of thousands of people (agents) from large complex spaces predicting the likely evacuation performance
- Agents are modelled individually each having distinct attributes, characteristics and abilities
- Uses a set of rules or heuristics to simulate human behaviour
- Some rules are stochastic (e.g. determining outcome of conflict resolution)
- Incorporates adaptive behaviour such as:
 - smoke avoidance, exit selection, congestion avoidance, itineraries, signage interaction, communication with other agents, use of lifts, escalators, travelators, etc
- Data that governs agent movement and behaviour comes from literature,
 experiments or studies of real events or incidents
- Can utilise a hybrid approach to represent the discretisation of space
- Can utilise a hybrid approach in population representation

Trafalgar Square demonstration: simulation of 125,000 agents

Love Parade disaster **reconstruction**: simulation of 100000 agents (21 fatalities and >500 injured)

Why model evacuation?

- How would you answer the following questions when planning or managing for a disaster?
- How long it will take to evacuate the area?
- How can one test or assess the safety levels afforded by existing evacuation procedures?
- What are the safety margins afforded by the incoming hazards (e.g. fire front/smoke plume, flood waters) as the population evacuates?
- How can you assess the impact of hazards (e.g. chemical hazard, fire products) on evacuating population?
- Which are the best routes for the people to follow?
- How can you **compensate if a route gets blocked** during the incident? **What** will your **options** be and how will you be able to **assess** them?
- How can you accommodate for the varied demographics, response times, travel speeds,
 behaviours and the people's interactions with each other and with the environment?
- **EXODUS** simulates the **evacuation** process and attempts to **address** all these questions!

EXODUS for large scale evacuation modelling

- EXODUS considers human factors and behaviours, as well as the environment when attempting to simulate the evacuation process
- Two variants of EXODUS used for large scale evacuation simulations
 - o urbanEXODUS → Evacuation simulation model or evac. engine
 - o webEXODUS → web GUI that uses urbanEXODUS
 - webEXODUS is integrated with COP, training tools, etc.
- Intended applications include evacuations due to natural or man-made disasters including:
 - Wildfires
 - Earthquakes
 - Floods
 - Tsunamis
 - Chemical spills
 - o etc...

Users: UOG

preparing scenario area

urbanEXODUS

preparation & planning

EXODUS

Evacuation
Simulation Engine

Users: incident

managers, first

responders on

the field

webEXODUS

Example Application – Medieval City of Rhodes Evacuation

Incident: Earthquake

Purpose: Model assembly and evacuation process

Input to evacuation component:

- Evacuation Area: Medieval City of Rhodes from OpenStreetMaps
- Exit points: paths and roads leading to gates
- Assembly locations: earthquake emergency shelters/locations
- Population distribution: off-peak and peak session
- Response time distribution
- Evacuation procedures
- Population notification: EARTHQUAKE

Medieval City of Rhodes Evacuation – Importing geometry

Imported area from OpenStreetMaps (OSM) and meshed in EXODUS:

Buildings, Streets and **Open Spaces**

In total 11 Gates exit on the perimeter walls of the Medieval City of Rhodes

Out of these 9 Gates have been modelled, these are:

- 1. Gate d' Amboise
- Liberty Gate
- 3. Gate of the Arsenal
- 4. Arnaldo Gate
- 5. Marine Gate
- 6. Gate of the Virgin
- 7. Acandia Gate
- 8. Gate of St John
- Gate of St Athanasios

Example – Population and Procedures

Population

- The population of the Medieval City of Rhodes varies significantly depending on the season
- Off-peak season (winter) population assumed to be ~6,000
- Population distributed evenly across Medieval City

Assumptions

- The **earthquake event** can alert the entire population of the city ∴ all people become aware of the earthquake incident
- Locals and visitors have full knowledge of Medieval City i.e. they know the locations of the emergency shelters, available Gates and the optimal paths to reach desired locations
- The response time of the population set to 45 sec to 7 minutes

Population of building Individual agent

Procedures

• First **assemble** to the designated emergency shelter location and then, if instructed to do so, **evacuate** via the nearest available Gate

Medieval City of Rhodes Evacuation – Assembly locations

Emergency shelters or locations:

- Nine assembly locations have been identified and implemented – all within the Medieval City walls
- In the event of an earthquake the **population** is instructed to move towards the assembly locations
- The population will be instructed to stay at these locations for some time by the authorities – the authorities may choose to issue a further evacuation command in which case the population will be instructed to leave the Medieval City via their nearest available Gate

Slide 9

Medieval City of Rhodes Evacuation – First assemble then evacuate

Example scenario

- Evacuation trigger event: EARTHQUAKE
- Population: 6000 evenly distributed
- Distribution: 30% within buildings 70% outside
- **Assumptions:** Best case scenario, all agents are fully familiar with the area and know the nearest assembly location and available gate
- First person to respond at 45"
- **Last person** to respond at 7 minutes
- Assembly process ends at ~15 minutes
- Pop. remains at assembly location for 5 minutes
- **Evacuation starts** at 20 minutes
- **Evacuation process** ends at ~31 minutes
- **NOTE:** a full study would require more realistic scenarios and assumptions e.g. non-uniform distribution of people, reduced familiarity with area and gates, possibly blocked routes or debris...

Slide 10

Rhodes Project 2019 – TTX Evacuation of Medieval City of Rhodes

- During the Rhodes Project 2019 TTX co-organised, amongst others, by Kapodistrian National University of Athens and Rhodes Municipality EXODUS was used to represent the TTX
- The TTX scenario assumed a series of events taking place throughout Rhodes island
- Only those events affecting the Medieval City were included in the EXODUS model including:
 - ► Earthquake → Notifies population, forcing them to act
 - o Action → Assemble then evacuate
 - o Collapse of historical buildings → people get trapped inside, evacuees must choose alternative routes to assemble and exit the Medieval city
 - o Fear of tsunami → Exits facing the sea are considered inappropriate for use
 - o Fire near one of the gates → People would need to redirect to alternative exit

Medieval City of Rhodes TTX Scenario

TTX scenario:

- Evacuation trigger event: Earthquake and fear of tsunami
- Population: 4000 evenly distributed
- Distribution: 30% within buildings 70% outside
- Assumptions: Best case scenario, all agents are fully familiar with the area and know the nearest assembly location and available gate
- Two historical buildings have collapsed
- 1. First person to respond at 60"
- 2. Last person to respond at 15 minutes
- 3. Assembly process ends at ~23 minutes
- 4. Pop. remains at assembly location for 7 minutes
- 5. Evacuation starts at 30 minutes
- 6. Gate D'Amboise closes at ~35 minutes
- 7. Evacuation process ends at ~56 minutes

Medieval City of Rhodes Evacuation – TTX Results

Evacuation performance

Evac. Time (min)	30.6		
PET (min)	20.2	24.9	30.6
CWT (min)	0.0	0.9	4.0
Distance (m)	22.4	384.1	817.1
Response (sec)	23.0	229.1	419.9

Evac. Time (min)	55.6		
PET (min)	33.5	42.9	55.6
CWT (min)	0.0	0.8	4.0
Distance (m)	223.4	821.4	1665.5
Response (sec)	22.5	483.7	899.9

Population data

Population (total)	6000
Pop. (evacuated)	6000
First (min)	20.2
Last (min)	30.6

Population (total)	3930
Pop. (evacuated)	3930
First (min)	33.5
Last (min)	55.6

Base case

TTX scenario

Gate usage

Name	Used	First (min)	Last (min)
G_Amboise	751	23.1	27.3
G_St_Athanasios	972	24.5	30.6
G_Red_St_John	790	24.0	28.3
G_Akantias	433	21.5	23.5
G_Virgin	598	21.6	25.3
G_Thalassini	1118	23.9	29.6
G_Amaldo	0	0.0	0.0
G_Tarsana	480	20.7	21.7
G_Eleftheria	858	20.2	21.3

Name	Used	First (min)	Last (min)
G_Amboise	110	33.5	34.6
G_St_Athanasios	2055	34.1	55.6
G_Red_St_John	1765	34.4	45.3

Medieval City of Rhodes Evacuation – Limitations and further study...

- Examined evacuation scenarios stipulates first assemble then evacuate
- **Assumptions** include perfect knowledge of Medieval city's layout, location of assembly points, location of gates as well as the shortest routes to these locations, all agents know what they should do
- Examined scenarios are optimal but more realistic scenarios can be examined, include:
 - More accurate representation of map region OSM data is often incomplete and/or wrong
 - More accurate distribution of population Data of exact building, street and open space occupancy can be used
 - Distinction of locals and visitors Different population characteristics and demographics can be applied for each population group
 - More accurate response time distribution for locals and visitors
 - Different and reduced familiarity with the region can be implemented for both locals and visitors
 - Effects of debris and blocked routes can be assessed

Data Output from Evacuation Simulation

EXODUS can provide a plethora of **quantitative** and **qualitative** output data including:

- Overview of entire evacuation process (visual data)
- Evacuation times
- Time agents reach safe locations (shelters or leaves danger zone)
- Usage of exit routes and assembly locations
- Total time people forced to travel slower or remain stationary in congestion
- Average distance travelled
- Impact of hazards on evacuating population (if applicable)
- Population density and Level of Service (LOS)
- o Identify **critical density** regions (> 4pm² for more than 10% of TET)

EXODUS – final comments

- Without simulating the assembly and evacuation process it is difficult, if not impossible, to:
 - Test and assess validity of existing evacuation procedures
 - Test what-if scenarios
 - Predict what may happen during a crisis
- With modelling you can achieve all the above plus...
 - You do not have to rely only on the crisis manager's experience to determine the evacuation outcome
 - You can augment the operator's knowledge and experience (which may be scenario/region specific)
 allowing them to take informed decisions at both planning stage and during incident management stage
- With modeling you can plan for future incidents
 - Save lives, time and money!
 - Public's confidence in the preparedness for future incidents is increased!
 - Provide increased safety during the management of a disaster.

FSEG

Evacuate safely and...

Thank you!

Any questions?
L.Filippidis@gre.ac.uk

Slide 17